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A variational estimate of the lowest eigenvalue of the 
multiatom, multimode Hamiltonian of quantum optics 

B V THOMPSON 
University of Manchester Institute of Science and Technology. 
Sackville St, Manchester 1, U K  

MS received 30 May 1972 

Abstract. In those cases where a direct diagonalization of the energy matrix is not attempted 
because of insuperable practical difficulties of computation, it is always possible to estimate 
the gamut of the eigenvalue spectrum by a variational method. A trial state function similar 
in some respects to a Glauber state is employed. Certain asymptotically exact results due 
to Tavis and Cummings are recovered. Finally, ways in which the accuracy might be 
improved are outlined. 

1. Introduction 

In nonlinear optics, a system of N two-level atoms interacting with a finite set of electro- 
magnetic field modes { k }  has been described by the Hamiltanian (Swain 1972): 

Here, ak is the photon annihilation operator, R*,  R ,  are the usual angular momentum 
operators with 

RZ = Rf+R;+R: = i(R+R-+R-R’)+R: 

[R’, R - ]  = 2R3 [ R 3 ,  R*] = f R * .  (2) 
The wavevectors k are such that Ikl is close to coo, the atomic level spacing. On this 
understanding, the k dependence of the coupling constant g is ignored. Interaction 
terms akR(-’, aiR(+) and the phase factors are also suppressed (Jaynes and Cummings 
1963). Constants of the motion are R2 and the ‘excitation number’, that is 

c = Ca,ta,+R,. 
(4  

It is convenient to treat just H -woC, that is 

(3) 

wkOalak +ga,R(+)+ g*a$R(-) 
(kl  

where wko = wk - coo. 

value chosen from 
The eigenvalues of R2 have the form r(r+l) ,  r taking an integer or half-integer 

N12iN12-1; . . .  ; . . .O or ). 
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Dicke called r the cooperation number since 2r is the number of atoms participating 
collectively in the quantum processes. The operator ( R 3  + r )  measures the number of 
cooperating atoms in their upper state. 

A model Hamiltonian of this sort is reportedly relevant to a theory of Josephson 
junctions, and to  the theory of phonon assisted phase transitions in certain vanadate 
crystals, as well as giving a description of frequency conversion in lasers. Generalizations 
of the model to include multiphoton interactions have lately been presented by Walls 
(1971). 

Many interesting attacks on the problem of finding the stationary states and eigen- 
values of H have been made (Tavis and Cummings 1968, Mallory 1969, Walls and 
Barakat 1970, Swain 1972) and while formal solutions have been given, closed expressions 
can be obtained only in special cases. Several treatments of the time evolution problem 
exist (eg Bonifacio and Preparata 1970, Walls and Barakat 1970, Pike and Swain 1971). 
It is well known that the basis states for the system will be finite in number and con- 
sequently the Schrodinger equation for the stationary states reduces to  the finite matrix 
eigenvalue problem. Since Swain has summarized this there would appear to be nothing 
more to add. However, the practical diagonalization of a matrix is nontrivial when the 
number of rows and columns exceeds 70 or so. It is beyond the resources of most 
computers when this figure enters the hundreds. Matrices exceeding this size are met 
with quite modest systems. For example, suppose we have 16 atoms cooperating fully 
( r  = 8). Taking c = 0 so that the photon number may take values from 0 to 8, we will 
suppose that the photons can go into six modes. With these quantum numbers the 
number of basis states depends on the ‘compositions’ of 8, 7 ,6 , .  . . ,2 ,  1, 0 into 6 parts 
and is 3003. Diagonalization of the associated matrix is out of the question. In these 
cases I believe that a less ambitious program can be justified beginning with an  estimation 
of the range of the energy spectrum using a variational method. (The highest eigenvalue 
of H is the lowest eigenvalue of - H . )  This is the subject of the present article. 

The quality of a variational approximation depends on how closely the trial function 
represents the true ground state. Since the general form of the eigenfunctions is known 
(see Swain 1972) one could construct a trial function as a linear combination of a small 
number of simultaneous eigenstates of R 2  and C. These would have to be selected 
so as to  be somehow representative of the basis set. It is not clear how this could be 
done. An alternative approach makes use of the observation (Tavis and Cummings 
1968, Walls and Barakat 1970) that the ground state apparently has properties similar 
to the coherent states (Glaiiber 1963). This idea will be developed to  construct a simple 
trial function for the system consisting of the product of a matter part and a photon 
occupation part, being an eigenstate of R 2  and having the correct expectation value of C .  
Conditions under which the stationary expectation value of H gives an upper bound on 
the ground state energy are established and discussed. A particularly satisfactory 
feature of the calculation is that in the case of interactions with photons in one resonance 
mode, the asymptotically exact results of Tavis and Cummings are recovered. 

2. A trial ground state 

Of the set { k }  there will be a vector K, or possibly several {IC} corresponding to  photons 
of lowest energy o(K) .  Let us assume that CO, < w,; then if g = 0, the state of lowest 
energy is the one in which all excitations are in the electromagnetic mode K ,  all atoms 
being in their lower state (R3  = - r ) .  If the coupling is turned on, excitations leave the 
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softest mode to partially populate the upper atomic levels and (in second order perturba- 
tion theory) photons appear in other modes, but always so that the value of the operator 
C is preserved. Lee et d(1953) have given us a method of constructing a state containing 
an indefinite number of bosons, in their polaron theory (see also Pines 1963). This 
device, known as the displaced oscillator transformation, is of fundamental importance 
for the discussion of coherent states (Glauber 1963). 

The state S(k)JOlk,), where IOlk)) is the photon vacuum and 

S ( k )  = exp(f*(k)ak-f(k)al (4) 
is a unitary operator, has the property 

Hence the state 

gives for the expectation value of the total photon number 

n K +  c I f ( k ) 1 2 '  
k # K  

By analogy it can be seen that if I - r )  is the matter ground state when g = 0, then a 
state of indefinite excitation is 

U21 - r )  exp(PR(')-P*R(-))I - r )  (7) 
where 8, like f ,  is at  our disposal. From the Baker-Hansdorf formula and the canonical 
commutation relations, it is quite straightforward to show that 

3 

U;'RiUZ = TjRj ( i  = 1,2,3) 
j =  1 

T i j  being an orthogonal matrix expressible in terms of P. I shall not give this in full, 
since only the third column is needed : 

Ti3 = cos 4 sin 8 T23 = sin 4 sin 8 T33 = COS 8 

arg P.  (9) e = 2IPI 4 =  - 
It should be said that the rotation associated with this canonical transformation is not 
the most general, since the third Euler angle t,b is not assigned independently. An 
immediate result is that the expectation value of R3 in the state U2J - r )  is --r cos 8. 
As a trial function, we take the product state 

ulu21--r)  l o ( k ) )  (10) 

which is automatically an eigenstate of R 2 ,  although not an eigenstate of C. However, 
we can impose the constraint 

n K +  )f(k)12-rcos8 = c 
k # K  

on any variation of the parameters where c is the appropriate eigenvalue of C so that 

(Y, CY) = c.  (12) 

Because Y is not an eigenstate of C ,  care must be exercised in formulating a variational 
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principle. It is reassuring to note that the dispersion of the c values in the state Y is 
roughly Poisson in type, tending to the Poisson value in the limit c >> r ; so this defect 
of the trial function becomes relatively unimportant in this limit. There is a parallel 
with thermodynamics, where a variational calculation of the free energy may violate 
certain sum-rules, notably the 'response-fluctuation identity'. 

3. Variational equations 

The remaining transformed operators are : 

U ;  'akU, = st(k)a,s(k) = ak-f(k) 

U ; ' a : U ,  = a l - . f * ( k ) .  
Also 

( - rlU; 'R' U , /  - r )  = - r e"" sin 0. 
Hence 

(Y, (H-oOC)Y)  Eo 

= oKonK + r sin Bb1/2nk'2(g e'" +g* e-'@) 

+ 2 (qolf(k)12 + 2r sin 0 Re g e'@f(k)) 
k + (K)  

(13) 

The possibility that there may be b photons in { ici} is allowed for. Because the interaction 
is isotropic, nKi depends only on ( ~ ~ 1  and equation (11) still applies if 

nK = 2 n K , '  (15) 
{ K I )  

The parameters 0, 4 and f(k) are now determined by the condition 

6Eo = 0 
or 

leading to the three independent equations : 

(wK-wk-rsin 6b'/2n;''Z Rege'4)f*(k)+rsinBge'" = 0 (16) 

2n;l2 cos 0 - r sin2B n; ' I 2  + 2 cos 0 c f ( k )  Re g e'" = 0 (17) 
k Z K  

From (16) the product f(k)g e'" is real, hence (18) reduces to 

++argg  = 0 or x .  (19) 

Consideration of the weak coupling limit shows that the choice n rather than 0 in (19) 
gives the lower energy. Further, f ( k )  is real and depends only on Ikl. If max lwkOl = 6, 
equations (16), (17) and (11) may be solved by iteration in powers of 1816- ' or 1g1-'5 
whichever is appropriate. 
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4. Examples 

4.1. Interaction with one mode IC at resonance 

On setting wKo = 0 andf(k) = 0, we find 

E ,  = - 21glr sin e(c + Y cos e)ii2 
where 

3r cos2tl + 2c cos 0 - r = 0. 

It follows that : 

nK = f {2c  +(c2 + 3r2)'12} (22) 

which in the limit r >> 1 ,  c >> 1 coincides with equation (4.4) of Tavis and Cummings 
(1968). Their asymptotically exact energy formulae are easily found from (20) and (21); 
for example if c = 0 we find cos 8 = 3-112 and hence 

E - -21glr3/221/23-3/4 
0 -  

Again, if c >> r ,  cos 0 1: 0 and Eo 1: -21g1rcii2, in accord with the intuitive picture of a 
macroscopic dipole moment 21glr interacting with an electric field cliz.  

Some numerical results for r = c are compared in table 1 with exact energies taken 
from the literature or calculated by the author. An isolated result concerning 24 atoms 
(Y = 12, c = 36) is E,/lgl (exact) = - 146.64 (Walls and Barakat 1970). The variational 
estimate is - 145.90 which is in error by approximately $%. 

Table 1. 

r (=  c) - E,/lgl exact Estimate - % error 

I 5 1 

4 
1 

2 
5 8.979 
3 11.71 
3 14.69 

!:l ] Mallory(1969) 
6.50 

5 

12 91.23 Walls and Barakat (1970) 

0.77 

4 
6.17 
8.606 
11.31 
14.26 
90.50 

J6 
23 
11 
7.2 
5.1 
4.2 
3.4 
2.9 
0.8 

4.2. Interaction with several modes at resonance 

Very few exact results are available when b > 1 ,  probably reflecting the fact that the 
number of basis states, namely 

rapidly increases with b and gives the cumbersome matrices noted in § 1 .  Table 2 
summarizes the work in this case. The figures suggest that the estimates are upper 
bounds on the lowest eigenvalues, the relative discrepancy tending to zero as r and c 
increase. 
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Table 2 

r c b -Eo/lgl  exact Estimate - ‘4 error 

1 4 /, b l 2  0.77b’’ 23  
$ 4 2 2  1.77 11  
1 0 2 2 (Swain 1972) 1.75 12 
2 0 2 5.29 4.96 6 
3 0 2 9.51 9.12 4 

4.3. Interaction of one atom with one mode K 

On putting r = f, oKo = - 6 and f ( k )  = 0, the variational equations are readily solved 
in powers of 1g16- ’ giving 

E ,  = ( c + f )  { -6--+, Id2 ”‘( c+- ;] . . . ] 
6 6  

This is greater than the exact expression (Jaynes and Cummings 1963) which in the 
weak coupling limit is 

In terms of lgJ - 6 these formulae appear as : 

-c6-c”21g1(1+(4c)-ligl-262.. . )  (estimate) ( 2 5 )  

-c6-(c+f)”21g1(1+(8c+4)-1~gl-262.. . }  (exact). (26)  

It is clear that the relative error vanishes as c -+ cc 

4.4. r = 1, c = 0;  two-off-resonance modes 

This example has been discussed by Swain (1972). We set wKo = -6, oko = + 6 and: 
for simplicity, assume that 1g16-l is small. One finds 

f ( k )  N (g126-2nt’2 

sin 6 = 21g16-’(l-41g126-2.. .) 

nK = 1 -21gI26-‘ + 13(g(‘6-‘ 

giving 

E ,  = -6-2Ig126-1+41gJ46-3.. 

This exceeds the exact result by 2)g146-3, to fourth order. 

5. Validity of the method 

In the usual derivation of the energy variational principle, the trial function is expanded 
in terms of the eigenfunctions of the Hamiltonian. These will be simultaneous eigen- 
functions of R 2  and C, say, where 1 labels the functions belonging to  excitation 
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number ci (the r label is suppressed). The range of the I suffix depends of course, on c 
and r. We can write 

where the distribution of ci values is peaked about some value c with variance 

c + +r(sin20 + 2 cos e). 

laIc,I2 = P I C ,  

(29) 

If the energy of the state is E(l,  ci) and 

then 

(y ,  HY) ( H )  = C pIc,E(L ci) 
I,cz 

= E(O, C) + 1 P I C , {  (E ( l ,  ci) - E(O, ci)) + (E(O, ci) - E(O, C))}. (30) 
I,c, 

Suppose that for each ci, E(0, ci) is the lowest eigenvalue, it follows that: 

There is a smooth function E(0, x )  which coincides with E(0, ci) for integer (or half- 
integer) values of x .  By the second mean value theorem 

E(0, x )  = E(0, c )  + ( x  - c)E’(O, c) + +tx - c)ZE”(O, i) 

[ = c+(x-c)8 0 < 8 < 1 .  

with 

Hence 

For values of c k r, the c dispersion of Y is roughly of Poisson type, and so only values 
of ci within about c1i2 of c will contribute to the sum in (32). In order to establish the 
variational principle it is sufficient that E”(0, x) is positive for x in the neighbourhood of 
c .  We may then assert that 

(33) 

Just beyond the region of linear optics, when c k - r one might expect that the binding 
energy would be proportional to  the number of excitations, that is, c+r. This would 
imply a zero value for E”(0, c )  in this region. Tavis and Cummings have shown that on 
resonance E”(0, c )  is positive for c > - r  and r >> 1. Continuity arguments suggest 
that this ‘curvature’ remains positive when the off-resonance parameter 6 is 
nonzero provided 6/(gl is small. Examination of particular exact results for r = f. 1 
strengthens the view that E”(0, c) is positive in general; for example, when r = 1, 
E(0, c) = -2lgl(~+;)’ /~ so that 

( H )  = Eo + OOC > E(0, c). 

E”(0, c) = +Igl(c++)-3/2 > 0. 
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6. Conclusion 

Although the results described are quite accurate when r and c are large, there is room 
for improvement when either r is small, or when both r and c are small. Pines (1963) 
has noted that the variational method is equivalent to a canonical transformation on H ,  
the ground state then being the vacuum state of the ‘new’ particles. Corrections to this 
ground state energy can then be found by perturbation theory on the new Hamiltonian. 

Alternatively, we can attempt to improve the trial function of 4 2 ; an obvious general- 
ization of the unitary operators based on the forms : 

exp(BR(+’-P*R(-’+?iR,) 

and 

exp(f(k)a, - f*(k)a:  + ia(k)a,ia,) 

introduces extra parameters y and a(k) but unfortunately leads to no essential changes. 
A more interesting line of attack seeks to reduce the c dispersion of Y. We can use the 
following theorem. 

Suppose Y is not an eigenstate of C, but (Y, CY) = c. If F ( x )  is everywhere positive 
and 

F‘(c) = 0 F”(c) < 0 

then the c dispersion of ( F ( C ) Y ,  F(C)Y)-’ i2F(C)Y is less than that of Y. 
I shall not give the proof of this result. It may suffice to remark that the procedure 

implicit in the theorem is analogous to the process in algebra for finding approximations 
to the largest eigenvalue of a matrix by repeatedly applying it to a (trial) column vector. 
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